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In trod uction 
Pharmaceutical research has been successful in 

identifying therapeutic agents by using conventional 
screening techniques. In this approach, large numbers 
of randomly selected compounds, either natural prod- 
ucts or synthesized compounds, are tested in a battery 
of biological assays, or “screens”. The combination of 
random selection and the ability of many screens to 
quickly evaluate the biological activity of a compound 
provides a practical means of identifying new “leads”, 
structural classes with potential in a specific therapeutic 
area. Once a lead is found, chemists synthesize varia- 
tions or “analogues” on the basic structure in an at- 
tempt to increase its activity and reduce its toxicity. 
From a small set of active compounds with low toxicity, 
usually one is then tested in clinical trials. In a few 
fortunate cases, compounds developed in this way will 
reach the market as drugs. To be marketable, a com- 
pound must be novel in addition to having good activity 
and low toxicity. The chief merit of the screening ap- 
proach is that it periodically uncovers structural classes 
of compounds not previously known or never before 
used in a particular therapeutic area. However, the 
process, being largely based on trial and error, requires 
large amounts of time and money. For every loo00 or 
more compounds synthesized each year in an average 
pharmaceutical company, less than one makes it to the 
market. Any method that allows the pharmaceutical 
chemist to increase the likelihood of synthesizing an 
active analogue or to increase his ability to find, or even 
design, novel leads is of enormous commercial interest. 

For this reason many pharmaceutical companies ex- 
plore structureactivity methods. The number of such 
methods has greatly expanded in recent years, along 
with the availability of commercial software and com- 
puter graphics systems. We like to divide structure- 
activity methods into two categories depending on how 
chemical structure is represented: topological/statis- 
tical methods and geometric modeling methods. 

In a “topological” approach1+ only the “flat” chemical 
structure of a molecule is taken into account. Statis- 
tical, or “pattern recognition”, techniques are commonly 
used to find structure-activity relationships for large 
numbers of chemical structures represented in this way. 
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In “modeling” methods,611 the chemist considers the 
properties of molecules in three dimensions. Confor- 
mationd analysis, quantum mechanics, and molecular 
mechanics techniques are important here. Interactive 
molecular graphics?8 which allows the chemist to ma- 
nipulate molecules in three dimensions and to perceive 
spatial information, is essential. Structure-activity 
relationships derived from modeling are often expressed 
in terms of pictures rather than in statistical rules. 
Modeling methods can be further subdivided into those 
most suitable for comparing small molecules and those 
most suitable for studying the interaction of small 
molecules with macromolecules (usually proteins). 
Recently, work has begun to reconcile the results from 
topological and modeling efforts.I2 

Our efforts at  Lederle have focused in the past 10 
years on developing methods of computer-aided drug 
design and applying them to practical problems. This 
review, divided into three parts, touches on some of the 
methods developed recently at  Lederle. The first part 
describes how a topological approach to molecular 
structure is used to enhance conventional random 
screening and aid in the process of drug design. The 
second part addresses a technique of finding common 
geometric features in sets of small molecules, with the 
goal of generating a three-dimensional model of a com- 
mon receptor. The third part describes an approach 
to studying the interaction of small molecules with 
macromolecules on the basis of molecular shape. 
Topological Approaches 

The pharmacological activity of a molecule at its site 
of action is due to the spatial arrangement and elec- 
tronic nature of its atoms. However, most molecules 
are flexible and it is often impossible or impractically 
time-consuming to specify which conformation(s) of the 
molecule are important, especially when large numbers 
of molecules have to be considered. It is common, 

* To whom correspondence should be addressed. 
(1) Martin, Y. C. In Quantitative Drug Design; Grunewald, G. L., Ed.; 

Marcel Dekker: New York, 1978; Med. Res. Ser. Vol. 8. 
(2) Hansch, C.; Leo, A. Substituent Constant for Correlation Analysis 

in Chemistry and Biology; Wiley: New York, 1979. 
(3) Mager, P.  P .  Multidimensional Pharmacochemistry: Design of 

Safer Drugs; Academic: New York, 1984; Vol. 20. 
(4) Stuper, A. J.; Brugger, W. E.; Jura, P. C. Computer Assisted 

Studies of Chemical Structure and Biological Function; Wiley: New 
York, 1979. 

(5) Clementi, S. In Drug Design: Fact or Fancy?; Jolles, G., Wool- 
dridge, K. R. H., Eds.; Academic: New York, 1984; pp 73-92. 

(6) Franke, R. Theoretical Drug Design Methods; Elsevier: New York, 
1984; VOl. 7. 

(7) Langridge, R.; Ferrin, T. E.; Kuntz, I. D.; Connolly, M. L. Science 
1981,211,661-666. 

(8) Meyer, E. F., Jr. In Drug Design; Academic: New York, 1980; Vol. 
IX, pp 268-299. 

(9) Cohen, N. C. In Aduances in Drug Research; Testa, B., Ed.; Aca- 
demic: New York, 1985; Vol. 14, pp 42-146. 

(10) Hopfinger, A. J. J. Med. Chem. 1985,28, 1133-1139. 
(11) Marshall, G. R. Annu. Rev. Pharmacol. Toxicol. 1987, 27, 

(12) Hansch, C.; Klein, T. E. Acc. Chem. Res. 1986, 19, 392-400. 
193-213. 

0 1987 American Chemical Society 



Vol. 20, 1987 New Methods in Computer-Aided Drug Design 323 

therefore, for structure-activity methods to consider 
only the “topology” of a molecule, that is, those aspects 
that are contained in a two-dimensional structural di- 
agram. A great deal of the three-dimensional infor- 
mation for a molecule is presumed to be implicit in the 
topological description despite the simplifications in- 
volved. With a topological approach we can take ad- 
vantage of the computerized “connection table” data- 
bases of many thousands of compounds commonly 
maintained by chemical and pharmaceutical companies. 

There are two aspects of these methods that are im- 
portant: the descriptors and the technique to relate 
these descriptors to activity. Molecular descriptors are 
numerical values which represent selected features of 
a molecule. There have been many descriptors pro- 
posed in the literature: physical properties (hydro- 
phobicity, electron-donating ability) of substituents, 
molecular shape, the presence of substructures, indexes 
of molecular connectivity, etc. We refer the reader to 
reviews in this area.ld 

Each molecule can be represented as a location in a 
high-dimensional space, each dimension corresponding 
to a descriptor. The problem of relating activity to 
structure becomes the problem of relating activity to 
location in the space. Again, a variety of methods have 
been described for dealing with the problem: nearest- 
neighbor analysis, partial-least-squares analysis, prin- 
ciple component analysis, linear regression, discrimi- 
nant-plane analysis, etc. These have also been re- 
viewed.ld 

Atom Pairs and Topological Torsions. We have 
presented13J4 two new descriptors, the “atom pair” (AP) 
and “topological torsion” (TT), and some methods of 
relating the descriptors to biological activity which we 
find extremely useful in the industrial environment. 
Both AP’s and TT’s are related to substructure de- 
scriptors proposed by others, and we refer the reader 
to the citations in ref 13 and 14. 

An A P  is a substructure composed of two non-hy- 
drogen atoms i and j and an interatomic separation 

(atom type i)-(separation)-(atom type j )  

where (atom type i )  contains information about the 
element type, the number of non-hydrogen neighbors, 
and the number of ?r electrons; (separation) is the 
number of bonds in the shortest bond-by-bond path 
that connects atoms i and j .  A structure with N non- 
hydrogen atoms is represented by the aggregate of N(N 

A TT is a substructure of four atoms i, j ,  l z ,  and 1 
- 1)/2 AP’s. 

which are directly bonded: 
(atom type i)-(atom type j)-(atom type k)- 

(atom type 1) 
A structure with M sets of four consecutively bonded 
atoms will be described by M TT’s. 

AP’s and TT’s capture complementary aspects of 
chemical structures, AP’s taking into account long-range 
properties and TT’s taking into account short-range 
substructures. The AP and TT descriptors were de- 
veloped to be general enough that we can generate 
structure-activity relationships for sets of compounds 
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Figure 1. Chemical structures in the Fine Chemicals Directory16 
which are the most similar to the probe diazepam on the basis 
of atom pair and topological torsion descriptors. The similarity 
values are shown in parentheses. 

with diverse chemical structures but specific enough in 
the aggregate to discriminate between closely related 
isomers. It is noteworthy that the descriptors are un- 
biased by any prejudice about what part of a molecule 
is the “core” and which the “substituent” or about the 
type of substructures that “should” be important. 

Similarity Probe. Given these descriptors, it is 
possible to define the “similarity” between two struc- 
tures as the number of descriptors they have in com- 
mon. Similarity ranges from 1.0 (complete identity) to 
0.0 (nothing in common). We have found this similarity 
criterion to be an extremely useful tool in enhancing the 
productivity of screening. Often, for instance, one 
would like to screen as diverse a set of compounds as 
possible. For this application the similarity criterion 
can be used in a converse way: Given a set of com- 
pounds, one can choose a subset such that each com- 
pound is dissimilar to every other. 

A more commonly used application is the “similarity 
probe”. This is used to select molecules from a large 
database which are the most similar to a “probe” 
structure and thus most likely to show similar biological 
activities. We commonly use as probes leads from the 
literature or active compounds found by previous 
screening effort. 

As an example of a probe molecule consider diazep- 
am. Diazepam belongs to the class of  benzodiazepine^,'^ 
compounds which bind to specific receptors on the 
GABA-R chloride channel complex and which show a 
variety of central nervous system effects, acting as 

(15) Haefely, W.; Kyburz, E.; Gerecke, M.; Molder, H. In Advances in 
Drug Research; Testa, B., Ed.; Academic: New York, 1985; Vol. 14, pp 
166-322. 
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anxiolytics, anticonvulsants, and hypnotics. Ten 
structures from the Fine Chemicals Directory16 which 
are most similar to the probe diazepam are shown in 
Figure 1. It is obvious that the similarity of these 
structures to the probe is at  a more general level than 
can be captured by a substructure search. Also, it 
should be noted that AP’s and TT’s capture different 
aspects of structures; while some structures are the 
same in the AP and TT list, expecially toward the 
highest similarity values, there are significant differ- 
ences between the lists. 

We often find that structures selected by the simi- 
larity probe have biological activities related to that of 
the probe several times more often than expected by 
chance. This is true even for compounds which are not 
simply analogues of the probe. Mecloqualone, for in- 
stance, which appears as 6 in the AP list in Figure 1, 
is a non-benzodiazepine with sedative and hypnotic 
activity. 

Trend Vector Analysis. When large numbers of 
molecules are available for which the biological response 
has been measured, we can begin to ask about which 
structural features distinguish the more active from the 
less active molecules. Imagine that we have a “training 
set” of structures, each with an activity value associated 
with it. Each molecule can be represented as a location 
in a high-dimensional space, each dimension associated 
with distinct type of descriptor (AP or TT) in the set. 
A ”trend vector” T, pointing from the inactive molecules 
toward the active molecules, can be calculated by a 
formula analogous to that for calculating a dipole mo- 
ment, with “activity” replacing charge. T summarizes 
the activity data in a chemically meaningful way: The 
vector component Tk is more positive as descriptor k 
is more closely associated with active molecules and 
more negative as it is more closely associated with in- 
active molecules. Calculating a trend vector is rapid, 
and it involves no adjustable parameters, thus avoiding 
the mathematical difficulties that arise from an excess 
of descriptors. 

The length of T can be used to decide whether the 
structure-activity relationship described by the vector 
is statistically significant. The vector calculated from 
the “real” activity data is thought to contain meaningful 
information if it is significantly longer than vectors 
calculated from spurious data created by randomly 
reassigning the original activities to the wrong struc- 
tures. 

The vector representation is also useful in that the 
angle between two vectors can be taken as a measure 
of their “parallelism”. Often by comparing trend vectors 
in this way, we detect a previously unsuspected simi- 
larity in the structure-activity relationships of two 
distinct biological activities. 

Given a significant trend vector, we can calculate the 
predicted activity (or rank) of any arbitrary structure 
by calculating the projection of the structure on T. We 
insist that at  least 95% of the descriptor types in the 
structure be “recognized” by the trend vector (that is, 
be present in the training set from which the vector was 
calculated) before rank can be assigned, since the con- 
tribution of the unrecognized descriptors to the activity 

(16) Fine Chemicals Directory Handbook; Fraser Williams (Scientific 
Systems): London, 1983-1985. Connection tables distributed by Mo- 
lecular Design Ltd., Hayward, CA. 

is undefined. Although the correlation between the 
observed activity and rank for molecules within a typ- 
ical training set appears quite modest when compared 
to those correlations generated by fitting methods which 
use adjustable parameters, the correlation for structures 
not already “fit” is sometimes ~omparab1e.l~ Whether 
AP or TT descriptors are better in capturing a struc- 
ture-activity relationship appears to  depend on the 
training set. 

We have developed two applications of trend vector 
based predictions. The first is a graphics-driven pro- 
gram with which a chemist can interactively draw a 
chemical structure and ask for the predicted activity. 
Given immediate feedback, the chemist can quickly 
design a molecule with a higher rank than the molecule 
he started with. The program also can make sugges- 
tions about atom replacements and additions that 
would tend to increase the rank. In the second appli- 
cation, one can scan a large database of compounds, 
calculate the rank for each, and save the structures with 
the highest ranks. These are the structures most likely 
to show activity. 

The clearest way to demonstrate the utility of the 
second application is by a retrospective experiment. A 
diverse set of about 4500 Cyanamid proprietary com- 
pounds were tested in the laboratory17 for binding to 
the insect nicotinic acetylcholine receptor. This re- 
ceptor, present in both vertebrates and invertebrates, 
is a transmembrane glycoprotein located in the post- 
synaptic membrane of cholinergic systems. The pur- 
pose of this screen was to identify compounds which 
could, like many plant products such as nicotine, act 
as insecticides by disrupting the function of acetyl- 
choline as a neurotransmitter. The compounds were 
called “active” or “inactive” depending on their ability 
to displace a radiolabeled receptor-specific protein 
neurotoxin from a receptor preparation.18 An active 
compound could be an agonist (which induces the same 
effect as acetylcholine) or antagonist (which blocks the 
effect). This large set was randomly divided into two 
smaller sets of approximately equal size. A trend vector 
(in this case the topological torsion descriptor proved 
better) was constructed by using one set as the training 
set. This vector was used to calculate the relative rank 
of compounds in the remaining “test” set.l* In a 
screening program, one is interested in finding a suf- 
ficiently large set of chemically diverse actives by 
screening the smallest number of compounds. By ran- 
dom screening, in order to find, say, 50% of the actives 
in the test set, we would expect to have to screen 50% 
of the set. However, if we screen the test set in the 
order of decreasing theoretical rank, we find about 50% 
of the actives in the first 10% of the compounds 
screened. This represents a 5-fold increase in “hit rate” 
(in this case from about 1% to about 5%) and a cor- 
responding 5-fold saving in screening effort. 

By itself, a &fold increase in hit rate is not necessarily 
impressive; chemists and biologists often achieve higher 
hit rates when selecting analogues of known actives. 
But typically the active structures found from trend 
vector ranking are more diverse, and thus the proba- 
bility is increased for discovering an unexpected new 

(17) Kukel, C.; Chalmers, A.; Jennings, K., personal communication. 
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Figure 2. Structures in the Cambridge Crystallographic Data- 
baseL9 most likely to bind to the insect nicotinic receptor. The 
ranks (relative predicted activities) of these structures as calculated 
from the topological torsion trend vector are shown in parentheses. 
Structures marked with an asterisk happened to be present in 
the training set of proprietary compounds from which the trend 
vector was calculated. 

class of active compounds. To illustate this, we have 
applied the trend vector described above to the con- 
nection tables of the Cambridge Crystallographic Da- 
tabase.lg The structures most likely to bind to the 
nicotinic receptor are shown in Figure 2. Structures 
1 and 10 (the alkaloid eserine) happen to be also in- 
cluded in the training set of proprietary compounds; 
they are active in the screen. Structures 3 and 5 re- 
semble structure 1. The known agonist nicotine appears 
as structure 6. The remaining structures are not ana- 
logues of any structure in the training set. Structure 
9 is the plant alkaloid decussine, which shows muscle- 
relaxing activity20 similar to that of strychnine, a nic- 
otinic antagonist. The remaining structures, especially 
4 (the alkaloid strychnobrasiline), are also likely to show 
related activity. 

Active Analogue Approach Ensemble Distance 
Geometry 

The “lock and key” analogy has been a useful idea in 
pharmacology. In that analogy ligands, e.g., drug 
molecules (keys), exert their effects by binding to re- 
ceptors (locks). Whereas real keys have only physical 
shape as the important property, drug molecules have 
a number of physicochemical properties. The 
“pharmacophore hypothesis” is the simplifying as- 
sumption that, to be activated, the receptor must rec- 
ognize a “pharmacophore”, a set of essential chemical 
groups common to all active molecules. Since the 
structure of most interesting receptors is not known, one 
must deduce the corresponding “pharmacophore model” 
from sets of active and closely related inactive mole- 
cules. Such a model has two important features: the 
pharmacophore geometry, i.e., the unique three-di- 
mensional arrangement of the essential groups (analo- 
gous to the pattern shared by all keys), and the binding 
site volume available for occupancy by ligands (analo- 
gous to the keyhole). 

(19) Allen, F. H.; Bellard, S.; Brice, M. D.; Cartwright, B. A.; Dou- 
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nard, 0.; Motherwell, W. D. s.; Rodgers, J. R.; Watson, D. G. Acta 
Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1979, B35, 
2331-2339. 

(20) Rolfsen, W. N. A.; Olaniyi, A. A.; Sandberg, F.; Kvick, A. H. Acta 
Pharm. Suec. 1980,17, 105-111. 

Deducing the pharmacophore geometry is compli- 
cated by the fact that most interesting ligand molecules 
are conformationally flexible. The first step in deducing 
the geometry is to choose the essential groups in each 
of a set of active molecules such that the equivalent of 
each group (which can be an atom, the center of a ring, 
etc.) appears in each molecule. The problem of finding 
the pharmacophore geometry (discussed in ref 21 and 
22) can then be stated: Find low-energy conforma- 
tion(s) for each molecule such that there is a arrange- 
ment of the groups common to all molecules, If there 
is no such arrangement, the initial choice of the groups 
must be revised. If there is more than one arrangement, 
more constraints must be applied. 

Once a unique pharmacophore geometry has been 
deduced, one has the further task of deciding for each 
molecule which of the low-energy conformations that 
can attain the pharmacophore geometry is the 
“receptor-bound” conformation. The union of the 
volumes of all receptor-bound conformations, docked 
together such that the equivalent groups are superim- 
posed, provides a minimum volume for the binding site. 
A molecule that can attain the pharmacophore geom- 
etry may still be inactive if it  extends outside the 
binding site volume. 

Two approaches have been previously explored for 
finding pharmacophore geometries from sets of flexible 
molecules. The first approach was developed by Mar- 
shall and c o - ~ o r k e r s . ~ ~  Other workers (for example 
Schulman et al.%) have used similar concepts with slight 
variations. A second approach came from Crippen and 
co-worker~.~~ Recently, we described26 an “ensemble” 
extension of distance geometry that provides a very 
different approach. Distance geometry is a technique 
that addresses the problem: given a set of N points 
(usually atoms in chemical applications) and a matrix 
of upper and lower bounds for the distances between 
them, generate three-dimensional coordinates such that 
the distance bounds are satisfied. An algorithm for 
accomplishing this was developed by Crippen and co- 
workers and has been described in detai1.27y28 Struc- 
tures generated by this algorithm represent Monte 
Carlo samplings of conformation space within the con- 
straints of the distance bounds. The key to our ex- 
tension is to include the atoms of all the molecules to 
be considered in one large distance bounds matrix. The 
distance bounds are set from the covalent structure of 
the molecule, from requirement that there be no in- 
tramolecular hard-sphere band contacts, and from the 
requirement that equivalent groups from different 
molecules be superimposed. The final structures gen- 
erated by the entire algorithm consist of several mole- 
cules, each in a low-energy conformation, superimposed 

(21) Motoc, I.; Dammkoehler, R. A.; Mayer, D.; Labanowksi, J. Quant. 
Struct.-Act. Relat. Pharmacol., Chem. Biol. 1986,5, 99-105. 
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Figure 3. (Top) A set of nicotinic agonists. (-)-Nicotine, (-)-cytisine, (-)-ferruginine methiodide, and (-)-muscarone were used to 
generate the pharmacophore geometry by using the ensemble approach. Trans-3,3'-bisQ was checked for consistency with the 
pharmacophore model. Atoms labeled D are *dummy" atoms along the angle bisector and 1.2 k, from the atom to which they are attached. 
In each molecule the bold letters A, B, and C indicate the atoms identified with essential groups in the pharmacophore. (Bottom) 
A stereopicture of the combined volume of the agonists: (+)- and (-)-nicotine, (+)- and (-)-muscarone, (-)-cytisine, (-)-ferruginine 
methiodide, and truns-3,3'-bisQ. The agonists, in their likely receptor-bound conformations, were docked so that the pharmacophore 
atoms were best superimposed. The symmetrical structure of truns-3,3'-bisQ suggests that the receptor can accommodate two 
pharmacophores. Most agonists occupy only half of such a site. We consider only that half-site and truncate trans-3,3'-bisQ accordingly. 
The mean position of each type of pharmacophore atom is shown by a large circle: A, B, and C are arranged counterclockwise with 
A at the left. Small dots indicate the solvent-accessible surface of the combined volume of the agonists. 

at  the essential groups. The pharmacophore geometry 
is found by inspecting these final structures. The en- 
semble approach has some advantages over previous 
methods in that it is possible to include steric interac- 
tions and common chiral constrainta between molecules, 
in that flexible rings are easily handled, and in that the 
computation time is independent of the number of ro- 
tatable bonds. 

One receptor where we applied the ensemble ap- 
proach with great success is the vertebrate nicotinic 
acetylcholine receptor (reviewed by Changeux et al.29). 
Nicotinic agonists induce an open-channel form of the 
receptor. Antagonists bind to the receptor but do not 
open the channel. To elucidate the pharmacophore for 
this receptor, we studied an ensemble of four semirigid 
agonists: (-)-nicotine, (-)-cytisine, (-)-ferruginine 
methiodide, and (-)-muscarone. Figure 3, top, shows 
the assignment of specific atoms as essential groups A, 
B, and C to be superimposed. A is a cationic center, 

(29) Changeux, 
225, 1335-1345. 

J.-P.; Devillers-Thiery, A.; Chemouilli, P. Science 1984, 

B is an electronegative atom capable of accepting a 
hydrogen bond, and C helps define the direction of 
hydrogen bonding around B. We generated several sets 
of superimposed structures and found that there was 
only one possible pharmacophore geometry within the 
error of superposition: a triangle with sides 4.8 (A-B), 
4.0 (A-C), and 1.2 A (B-C). This geometry is consistent 
with the earlier model of Beers and Rei~h.~O We found 
that the pharmacophore geometry could be also at- 
tained by the antagonists strychnine, trimethaphan, 
dihydro-&erythroidine, and the agonist trans-3,3'-bis- 
[ (trimethy1ammonio)methyll azobenzene (trans-3,3'- 
bisQ). 

For (-)-nicotine, (-)-ferruginine methiodide, (-)- 
muscarone, and trans-3,3'-bisQ there is more than one 
low-energy conformation that can attain the pharma- 
cophore geometry. However, if we assume that these 
three molecules should fit into approximately the same 
volume as (-)-cytisine, for which there is only one such 
conformation, we are able to decide on a unique re- 

(30) Beers, W. H.; Reich, E. Nature (London) 1970, 228, 917-922. 
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ceptor-bound conformation for each. This is also true 
for (+)-nicotine and (+)-muscarone, which are also 
agonists. Once all the agonists are docked together, we 
get an idea of the volume that agonists can occupy on 
the receptor. This volume is shown in Figure 3 (below). 
Given the pharmacophore and the allowed volume, one 
may start to design new agonists to fit the model. 
Applications of Shape Matching 

One important aspect of ligand-receptor interactions 
is thought to be the complementarity in their shapes. 
Methods have been ~ u g g e s t e d ~ l p ~ ~  for docking two 
macromolecules by shape. Kuntz et al.33 proposed a 
shape-matching method for docking rigid small mole- 
cules onto a receptor of known structure. In collabo- 
ration with his we have made several exten- 
sions of this method. 

The shape-matching method requires shape repre- 
sentations of the receptor binding site and of the ligand. 
To characterize the shape of the receptor, we generate33 
a set of spheres outside the solvent-accessible surface36 
which fill all the pockets and grooves on the receptor. 
(In the lock and key analogy, the atoms of the receptor 
represent the lock and the receptor spheres approxi- 
mate the shape of the keyhole.) Over a typical mac- 
romolecule there are several distinct sets of overlapping 
spheres, representing surface invaginations of various 
sizes, but the largest set usually corresponds to the 
observed binding site. The shape of a ligand can be 
most simply defined by the location of its non-hydrogen 
atoms. Both the receptor and ligand are treated as 
rigid. 

The geometrically possible ways to orient a ligand in 
the binding site are found by a method of systematic 
distance matching33 that maps a subset of ligand atoms 
into a subset of pockets, each pocket defined by a 
sphere center, that can receive them. Typically, there 
may be a few hundred orientations for a given ligand. 
These orientations can then be processed further de- 
pending on the application. 

In one a p p l i ~ a t i o n , ~ ~  we automate the search for 
geometrically plausible ways to fit a known ligand onto 
a receptor of known three-dimensional structure. Our 
approach assumes that shape complementarity is useful 
criterion for finding the right binding mode. 

Most ligands are flexible molecules. The shape- 
matching algorithm can be used if the flexible ligand 
is approximated as a small number of large rigid frag- 
ments. Orientations for each fragment in the binding 
site are generated as described above. For each frag- 
ment, we eliminate those orientations that result in a 
significant overlap between the fragment and the re- 
ceptor and eliminate those orientations that are nearly 
coincident with another orientation. To recreate the 
ligand, we systematically pair the orientations of the 
two fragments and save the orientations in which 
specified atoms from each fragment can be rejoined as 
they were joined in the intact ligand. A set of orien- 
tations chosen in this way constitutes a “binding mode” 

(31) Wodak, S. J.; Janin, J. J. Mol. Biol. 1978, 124, 323-342. 
(32) Santavy, M.; Kypr, J. J. Mol. Graphics 1984, 2, 47-49. 
(33) Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, 

T. E .  J. Mol. Biol. 1982,161, 269-288. 
(34) DesJarlais, R. L.; Sheridan, R. P.; Dixon, J. S.; Kuntz, I. D.; 

Venkataraghavan, R. J. Med. Chem. 1986,29,2149-2153. 
(35) DesJarlais, R. L.; Sheridan, R. P.; Seibel, G. L.; Dixon, J. S.; 

Kuntz, I. D.; Venkataraghavan, R., submitted to J. Med. Chem. 
(36) Connolly, M. J. Appl.  Crystallogr. 1983, 16, 548-558. 

for the ligand. We then divide the binding modes into 
“families” and energy minimize each family in the 
presence of the receptor using (assisted model 
building and energy refinement). We show as an ex- 
ample the case of methotrexate docked to dihydrofolate 
reductase (DHFR). ‘DHFR, a key enzyme in the me- 
tabolism of all living organisms, catalyzes the reduction 
of dihydrofolate to tetrahydrofolate. DHFR inhibitors 
act as antitumor agents (e.g., methotrexate) and anti- 
bacterial agents (e.g., trimethoprim). The crystal 
structures of several DHFR-inhibitor complexes are 
kn~wn.~%~O For the purposes of this application, the 
most interesting inhibitor is methotrexate, an analogue 
of the substrate folate. The bound conformation of 
methotrexate shows strong shape complementarity to 
the active site of DHFR. 

Spheres were generated to define the shape of the 
methotrexate binding site on DHFR. Methotrexate was 
approximated as two large fragments called fragment 
1 and fragment 2. The receptor and fragments are 
shown in Figure 4, top and middle, respectively. Ori- 
entations were generated for each fragment and were 
processed as described. We found four families of 
binding modes. Two of these, in which the “pteridine” 
portion of the ligand pointed outward, were of high 
energy. The two low-energy families are shown in 
Figure 4 (below). One looked very much like the 
crystallographically observed binding mode of metho- 
trexate, and one was in an “inverted” mode very much 
like that thought to be assumed by folate.38 

We are currently developing shape matching as a tool 
for designing novel ligands to bind to a given recep- 
tor.35142 In these applications, one scans a databse of 
small molecules to find those molecules which have the 
best shape complementarity to the receptor binding site 
and then modifies the molecules to complement the 
receptor in chemical properties. The shape of the re- 
ceptor may be known from X-ray crystallography or be 
derived from pharmacophore models of the type de- 
scribed in the previous section. 

Conclusion 
The goal of “designing” drugs, in the sense that one 

designs an airplane or a bridge, has not yet been realized 
since the pharmacological equivalent of the principles 
of aerodynamics or structural engineering remains 
largely unknown. The purpose of current methods of 
computer-aided drug design, then, is to generate sta- 
tistical or graphical models consistent with experiment 
and then suggest, on the basis of the models, which new 
experiments will be the most fruitful. Until recently, 
practitioners of drug design methods were limited by 
the availability of appropriate software and computer 
graphics systems. Now that these barriers have been 
at least partly removed, the limit to generating a useful 
model is the lack of experimental data. We anticipate 

(37) Weiner, P. K.; Kollman, P. A. J. Comput. Chem. 1981,2,287-303. 
(38) Bolin, J. T.; Filman, D. J.; Matthews, D. A.; Hamlin, R. C.; Kraut, 

J. J. Biol. Chem. 1982,257, 13650-13662. 
(39) Blakley, R. L. In Folates and Pterins I; Blakley, R. L., Benkovic, 

S. J., Eds.; Wiley: New York, 1984; pp 191-253. 
(40) Freisheim, J. H.; Matthews, D. A. In Folate Antagonists as 

Therapeutic Agents I; Sirotnak, F. M., Burchd, J. J., Ensminger, W. D., 
Montgomery, J. A., Eds.; Academic: New York, 1984; pp 69-131. 

(41). Bemstein, F. C.; Koetzle, T. F.; Williams, G. J. B.; Meyer, E. F., 
Jr.; Brice, M. D.; Rodgers, J. R.; Kennard, 0.; Shimanouchi, T.; Tasumi, 
M. J. Mol. B i d .  1977, 112, 535-542. 

(42) Sheridan, R. P.; Venkataraghavan, R., unpublished data. 
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Figure 4. (Top) Representation of the shape of the active site from L. casei dihydrofolate reductase (Brookhaven Protein Data Bank41 
coordinate set 3DFR). The 22 spheres representing the site are shown as large circles. In the crystallographically observed binding 
mode of the inhibitor methotrexate, the pteridine ring of methotrexate f i t s  toward the left, the benzoate portion fits in the corner, 
and the amino acid portion points down. (Middle) The shape of methotrexate is approximated as two large rigid framents. In selecting 
orientations of each fragment to be joined, we require that B and B' be nearby (they are the same atom in the intact ligand) and that 
A and C be approximately the same distance as they would be in the angle A-B-C. (Bottom) Stereopictures of two low-energy binding 
modes for methotrexate (only those atoms in the fragments are included) on dihydrofolate reductase. The crystallographically observed 
binding mode for the entire methotrexate molecule (dotted) is shown for comparison. Explicit hydrogens were included on heteroatoms 
for the energy minimization, but these are omitted here for clarity. The upper mode closely resembles the observed binding mode, 
while the lower mode resembles the mode thought to be adopted by the substrate folate. 
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no doubt fesult in a more timely testing of computer- 
generated models. 
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that two current trends will correct this situation. The 
first trend is the increasing availability of crystal 
structures of macromolcules which are of pharmaco- 
logica1 interest and the Of biolofl 
ad protein engineering techniques which us un- 
derstand drW-recePtor interactions at  the molecular 
level. The second is the increasing availability Of 
modeling tools to experimentalists, a trend which will 
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Introduction 
The reactions of compounds containing divalent sil- 

icon atoms, generally called silylenes,' were of particular 
interest to us from the beginning of our efforts to em- 
ploy the mechanistic ideas of organic chemistry beyond 
the first row of the periodic table. The reactions of 
divalent carbon compounds-carbenes-are so dis- 
tinctive2 that it seemed possible to address the differ- 
ences between reactions of silylenes and carbenes even 
while the mechanisms of carbene reactions were being 
elucidated. 

It has been found that the most important types of 
transformations of carbenes are shared by silylenes? as 
shown in Scheme I. Since these reactions are both 
unusual and useful, we were curious about exactly how 
they occur, and we wanted detailed mechanistic 
knowledge in order to exercise greater control over 
them. 

Our knowledge of silylene reaction mechanisms is 
rather r~dimentary.~ Almost every known silylene has 
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Scheme I. 
Comparable React ions of Carbenes and Si ly lenes 
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a singlet electronic ground state, so that only singlet 
silylene chemistry is thus far known. Silylenes have 
been found to readily insert into Si-H, Ge-H, and 0-H 
bonds, and C-H insertion is known as an intramolecular 
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(3 )  Gaspar, P. P. React. Intermed. (Wiley) 1978, I ,  229-277; 1981,2, 
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